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Abstract In this work we consider explicit symplectic partitioned Runge–Kutta
methods with five stages for problems with separable Hamiltonian. We construct
three new methods, one with constant coefficients of eight phase-lag order and two
phase-fitted methods.
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1 Introduction

In the last decade there has been a lot of research on the construction of numerical
methods specially designed for the integration of problems with oscillatory or periodic
solution. ([2,5–7,10,11,14,13,16–23]). Also a lot of research has been performed in
the area of numerical integration of Hamiltonian systems. Hamiltonian systems appear
in many areas of mechanics, physics, chemistry, and elsewhere.

Symplecticity is a characteristic property of Hamiltonian systems and many authors
developed and applied symplectic schemes for the numerical integration of such sys-
tems. Many authors constructed symplectic numerical methods based on the theory of
Runge–Kutta methods these are symplectic Runge–Kutta (SRK) methods, symplec-
tic Runge–Kutta–Nyström (SRKN) methods and symplectic partitioned Runge–Kutta
(SRRK) methods. The theory of these methods can be found in the books of Hairer
et al. [4] and Sanz-Serna and Calvo [15].
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Additionally the solution of Hamiltonian systems often has an oscillatory behavior
and have been solved in the literature with methods which take into account the nature
of the problem. There are two categories of such methods with coefficients depending
on the problem and with constant coefficients. For the first category a good estimate
of the period or of the dominant frequency is needed, such methods are exponetially
and trigonometrically fitted methods, phase-fitted and amplification fitted methods.
In the second category are methods with minimum phase-lag, P-stable methods and
are suitable for every oscillatory problem. The phase-lag (or dispersion) property was
introduced by Brusa and Nigro [3] and was extended to RK(N) methods by van der
Houwen and Sommeijer [24]. The idea of phase-fitting was introduced by Rapris and
Simos [12].

In this work we consider SPRK methods with five stages and we present three
new methods. A method with constant coefficients, third algebraic order and eight
phase-lag order. Two phase fitted methods one of third algebraic order and a modified
method based on the fourth algebraic order SPRK method of [8]. In Sect. 2 we present
the basic theory of SPRK methods and phase-lag analysis. In Sect. 3 the new methods
are developed. Section 4 presents numerical evidence and conclusions are given in
Sect. 5.

2 General theory

2.1 Symplectic partitioned Runge–Kutta methods

We shall consider Hamiltonian systems with separable Hamiltonian

H(p, q, x) = T (p, x)+ V (q, x)

where T is the kinetic energy and V is the potential energy. Then the Hamiltonian
system can be written as:

p′ = f (q, x), q ′ = g(p, x) (1)

where

f (q, x) = −∂H

∂q
(p, q, x) = −∂V

∂q
(q, x),

g(p, x) = ∂H

∂p
(p, q, x) = ∂T

∂p
(p, x)

Partitioned Runge Kutta methods are appropriate methods for the numerical integra-
tion of Hamiltonian systems with separable Hamiltoniann.

A partitioned Runge–Kutta (PRK) scheme is specified by two tableaux

C a
c

D A
d

where a, A are s × s matrices and c, d, C , D are s size vectors. Let e = (1, 1, . . . , 1)
then C = a.e and D = A.e. The first tableau is used for the integration of p
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components and the second tableau is used for the integration of the q components as
follows:

Pi = pn + h
s∑

j=1

ai j f (Q j , x + C j h),

Qi = qn + h
s∑

j=1

Ai j g(Pj , x + c j h), (2)

i = 1, 2, . . . , s, and

pn+1 = pn + h
s∑

j=1

ci f (Qi , x + Ci h),

qn+1 = qn + h
s∑

j=1

di g(Pi , x + ci h).

The above method is symplectic if the coefficients satisfy

ci Ai j + d j a ji − ci d j = 0, i, j = 1, 2, . . . , s. (3)

The advantage of using SPRK is that there exist explicit SPRK methods, while SRK
methods can not be explicit. Assume the following explicit form ai j = 0 for i < j and
Ai j = 0 for i ≤ j . Then due to the symplecticness requirement (3) the coefficients
ai j and Ai j are fully determined in terms of the coefficients ci and di .

ai j = c j , Ai j = d j , i = 1, 2, . . . , s. (4)

The SPRK method can be denoted by

[c1, c2, . . . , cs](d1, d2, . . . , ds)

Abia and Sanz-Serna [1] considered symplectic PRK methods and gave the order
conditions. The order conditions for SPRK methods up to order 3 are the following.

first order

c.e = 1, d.e = 1,

second order

c.A.e = 1

2
,

third order

c.A.a.e = 1

6
, d.a.A.e = 1

6
,

fourth order

c.A.a.A.e = 1

24
, d.a.A.a.e = 1

12
, c.A.((a.e)(a.e)) = 1

12
.
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2.2 Phase-lag analysis

Phase-lag analysis of numerical methods for second order equations is based on the
scalar test equation q ′′ = −w2q, wherew is a real constant. For the numerical solution
of this equation we can write

(
qn

h pn

)
= Mn

(
q0

h p0

)
, M =

(
As(v

2) Bs(v
2)

Cs(v
2) Ds(v

2)

)
, v = wh

The eigenvalues of the M are called amplification factors of the method and are the
roots of the characteristic equation

ξ2 − tr(M(v2))ξ + det(M(v2)) = 0

The phase-lag (dispersion) of the method is

φ(v) = v − arccos

(
tr(M(v2))

2
√

det(M(v2))

)
,

and the dissipation (amplification error) is

α(v) = 1 −
√

det(M(v2)).

A PRK method is said to have phase-lag order q and dissipation order r if

φ(v) = O(q+1) and α(v) = O(vr+1)

The method is called zero-dissipative if α(v) = 0. For a symplectic PRK method the
determinant of the amplification matrix is zero, so the methods we construct here are
zero dissipative. Then the phase-lag of the method is

φ(v) = v − arccos

(
tr(M(v2))

2

)
,

The trace tr(M(v2)) is a polynomial of order 2s where s is the number of stages of
the PRK method.

A phase-fitted method is a method with phase-lag order infinity. Then the coeffi-
cients of the method satisfy φ(v) = 0 and depend on the frequency v.

3 Construction of the new methods

We shall construct methods with five stages then the trace is a polynomial of degree
ten.

tr(M(v2)) = 2 − pl2v
2 + pl4v

4 − pl6v
6 + pl8v

8 − pl10v
10

where

pl2 = (c1 + c2 + c3 + c4 + c5)(d1 + d2 + d3 + d4 + d5),
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pl4 = c1c2d1d2 + c2c3d1d2 + c2c4d1d2 + c2c5d1d2 + c1c2d1d3

+ c1c3d1d3 + c2c4d1d3 + c3c4d1d3

+ c2c5d1d3 + c3c5d1d3 + c1c3d2d3 + c2c3d2d3 + c3c4d2d3

+ c3c5d2d3 + c1c2d1d4 + c1c3d1d4

+ c1c4d1d4 + c2c5d1d4 + c3c5d1d4 + c4c5d1d4 + c1c3d2d4

+ c2c3d2d4 + c1c4d2d4 + c2c4d2d4

+ c3c5d2d4 + c4c5d2d4 + c1c4d3d4 + c2c4d3d4 + c3c4d3d4

+ c4c5d3d4 + c1c2d1d5 + c1c3d1d5

+ c1c4d1d5 + c1c5d1d5 + c1c3d2d5 + c2c3d2d5 + c1c4d2d5

+ c2c4d2d5 + c1c5d2d5 + c2c5d2d5

+ c1c4d3d5 + c2c4d3d5 + c3c4d3d5 + c1c5d3d5 + c2c5d3d5

+ c3c5d3d5 + c1c5d4d5 + c2c5d4d5

+ c3c5d4d5 + c4c5d4d5,

pl6 = c1c2c3d1d2d3 + c2c3c4d1d2d3 + c2c3c5d1d2d3 + c1c2c3d1d2d4

+ c1c2c4d1d2d4 + c2c3c5d1d2d4

+ c2c4c5d1d2d4 + c1c2c4d1d3d4 + c1c3c4d1d3d4 + c2c4c5d1d3d4

+ c3c4c5d1d3d4 + c1c3c4d2d3d4

+ c2c3c4d2d3d4 + c3c4c5d2d3d4 + c1c2c3d1d2d5 + c1c2c4d1d2d5

+ c1c2c5d1d2d5 + c1c2c4d1d3d5

+ c1c3c4d1d3d5 + c1c2c5d1d3d5 + c1c3c5d1d3d5 + c1c3c4d2d3d5

+ c2c3c4d2d3d5 + c1c3c5d2d3d5

+ c2c3c5d2d3d5 + c1c2c5d1d4d5 + c1c3c5d1d4d5 + c1c4c5d1d4d5

+ c1c3c5d2d4d5 + c2c3c5d2d4d5

+ c1c4c5d2d4d5 + c2c4c5d2d4d5 + c1c4c5d3d4d5 + c2c4c5d3d4d5

+ c3c4c5d3d4d5

pl8 = c1c2c3c4d1d2d3d4 + c2c3c4c5d1d2d3d4 + c1c2c3c4d1d2d3d5

+ c1c2c3c5d1d2d3d5 + c1c2c3c5d1d2d4d5

+ c1c2c4c5d1d2d4d5 + c1c2c4c5d1d3d4d5 + c1c3c4c5d1d3d4d5

+ c1c3c4c5d2d3d4d5 + c2c3c4c5d2d3d4d5,

pl10 = c1c2c3c4c5d1d2d3d4d5

We consider three different methods:

Method I A method with constant coefficients third algebraic order and eight phase-
lag order.
Method II A modified phase-fitted method of third algebraic order.
Method III A modified phase-fitted method based on a fourth algebraic SPRK
method.
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3.1 Construction of Method I

To ensure third algebraic order the coefficients of the method must satisfy five order
conditions. We take the coefficients ci

c1 = 1

2
− z, c2 = z − 1

3
, c3 = 2

3
, c4 = c2, c5 = c1

then the first order condition for ci is satisfied. We solve the other four order conditions
for the coefficients d1, d2, d3 and d4.

d1 = −9z2 + 3z − p + 3d5(2z − 1)(3z − 1)(9z + 2)

24(1 − 3z)2z(3z + 1)
,

d2 = p − 9z − 9(3z − 1)(4(d5 − 1)z2 − d5)+ 3

8(1 − 3z)2(3z + 1)
,

d3 = − p + 9z + 9(3z − 1)(4(d5 − 1)z2 − d5)− 3

8(1 − 3z)2(3z + 1)
,

d4 = −9z2 + 3z + p + 3d5(z(−54z2 + 3z + 11)− 2)

24(1 − 3z)2z(3z + 1)

where

p = (1 − 3z)

×
√

3(z(−72z2 + 7)+ 6d5z(72z3 − 24z2 − 8z + 1)+ 3d2
5 (144z4 + 60z3 − 52z2 − 15z + 4)).

Since the method has third algebraic order the trace agree with the Taylor series of
2cos(v) for terms up to v4, that is

pl2 = −1, pl4 = 1/12.

In order to increase the phase-lag order we require the following conditions to hold

pl6 = −1/360, pl8 = 1/20160.

We solve these two equations for z and d5

z = 0.7907481189777148, d5 = 0.7037095181303595.

3.2 Construction of Method II

This is a method with variable coefficients. We want the five conditions of third alge-
braic order to hold together with the phase fitting condition. We let

c1 = c5 = 0, c2 = c4, d5 = 0

and solve for c2, c3 and di for i = 1, 2, 3, 4.
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These coefficients are complicated and their Taylor expansions are given here.

c2 = 0.5755919111469455 − 0.006552769020205345 v2

− 0.00001830478271674793 v4 − 4.055537776210506 10−6 v6

+ 2.81863169165949 10−8 v8,

c3 = −0.151183822293891 + 0.01310553804041069 v2

+ 0.00003660956543349587 v4 + 8.111075552421013 10−6 v6

− 5.637263383318979 10−8 v8,

d1 = 0.24041204616533 − 0.003789825915522 v2 − 0.000063636842587 v4

− 4.92256296593 10−6 v6 − 1.96594965267 10−7 v8,

d2 = 0.880489976205 + 0.01115335865068 v2 + 0.001266315074214 v4

+ 0.00009622891235 v6 + 8.6293569801 10−6 v8,

d3 = −0.1982291828831 − 0.0139201872815 v2 − 0.00114290069064 v4

− 0.000098226801417 v6 − 8.4354539829 10−6 v8,

d4 = 0.07732716051274 + 0.006556654546339 v2 − 0.0000597775409872 v4

+ 6.92045203331 10−6 v6 + 2.691968031 10−9 v8.

3.3 Construction of Method III

We modify the fourth order symplectic partitioned Runge–Kutta method of McLachlan
[8]. The coefficients of the method are

c1 = 1

2
− z, c2 = z − 1

3
, c3 = 2

3
, c4 = c2, c5 = c1,

d1 = 1, d2 = −1

2
, d3 = d2, d4 = d1, d5 = 0.

The first and second order conditions are satisfied as well as two conditions from
orders three and four (d.a.A.e = 1/6, d.a.A.a.e = 1/12). For the remaining three
equations we have

c.A.a.e = 13

36
− 2z2, c.A.a.A.e = 5

36
− z2, c.A.((a.e)(a.e)) = 13

72
− z2.

McLachlan used

z = 1

3

√
7

8

to achieve fourth order. Here we obtain z from the phase fitting equation

z = (−36 + 24 v2 + 7 v4) v4 + a−1/3
1 a3 v

8 + a−1/3
1

18 (6 + v2) v6

where
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a1 = (a2 + cos(v)(−629856 − 209952 v2 − 17496 v4)) v12 + √
a4,

a4 = (−a3
3 + (a2 − 17496 ∗ (6 + v2)2 cos(v))2) v24,

a2 = 583200 − 11664 v2 − 23328 v4 − 3996 v6 − 162 v8 + 18 v10 + v12,

a3 = 1296 − 1728 v2 − 144 v4 + 12 v6 + v8.

For the order conditions that are not satisfied we have

c.A.a.e = 1

6
+ O(v2), c.A.a.A.e = 1

24
+ O(v2),

c.A.((a.e)(a.e)) = 1

12
+ O(v2).

4 Numerical results

We shall use our new methods for the computation of the eigenvalues of the one-
dimensional time-independent Schrödinger equation. The Schrödinger equation may
be written in the form

− 1

2
ψ ′′ + V (x)ψ = Eψ (5)

where E is the energy eigenvalue, V (x) the potential, and y(x) the wave function.
We present numerical results obtained by the three new methods (Meth1, Meth2,

Meth3), as well as several SPRK methods the third order three stage method of Ruth,
fourth order methods with 4–7 stages, the sixth order ten stage method of Yoshida and
the well known fourth order Numerov method (Num). The coefficients of all methods
can be found in [9].

We consider two potentials the harmonic oscillator potential and the doubly anhar-
monic oscillator.

4.1 The harmonic oscillator

The potential is

V (x) = 1

2
kx2

with boundary conditions ψ(−R) = ψ(R) = 0. We consider k = 1.
The exact eigenvalues are given by

En = n + 1

2
, n = 0, 1, 2, . . .

In Table 1 we give the absolute error (×10−6) of the eigenvalues of the harmonic
oscillator with step size h = 0.05.
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Table 1 Absolute error (×10−6) of the eigenvalues of the harmonic oscillator (h = 0.05)

R Meth1 Meth2 Meth3 Y4 Ruth Num 4,5 4,6 4,7

E0 5 0 0 0 0 0 0 0 0 0

E5 6 0 0 0 174 2 6 0 0 0

E10 7 2 0 0 1,209 13 71 0 0 5

E30 10 4 2 1 – 294 930 20 18 6

E50 12 6 3 2 – − − 94 84 27

E100 16 9 6 5 – − − 745 691 213

E150 19 166 8 7 – − − − 2,425 716

E200 22 795 9 10 – − − − – 1,697

E300 26 − 34 16 – − − − – –

E400 30 − 375 20 – − − − – –

E500 33 − − 27 – − − − – –

Table 2 Absolute error (×10−6) of the eigenvalues of the doubly anharmonic oscillator with step size
h = 1/40 (R = 3)

Meth1 Meth2 Meth3 Y4 Y6 Num 4,5 4,6 4,7

0.807447 0 0 0 0 0 0 0 0 0

5.553677 1 1 1 19 0 1 1 0 0

12.534335 3 0 1 235 0 8 1 0 0

21.118364 7 1 2 1,141 7 37 1 1 0

31.030942 14 2 5 3,665 40 118 2 3 1

42.104446 24 4 9 – 144 295 2 8 1

54.222484 35 5 12 – 410 630 4 14 2

67.29805 51 8 18 – 1,004 1,207 10 26 7

81.262879 71 12 25 – 2,191 – 24 46 12

96.061534 94 15 32 – – – 48 74 21

111.647831 121 19 42 – – – 84 115 33

127.982510 152 24 53 – – – 138 173 51

145.031661 184 27 63 – – – 216 248 78

162.765612 213 36 64 – – – 328 340 121

181.158105 448 43 77 – – – 523 413 223

200.185694 621 51 111 – – – 980 300 560

219.827273 838 60 131 – – – 2,388 673 1,815

4.2 The doubly anharmonic oscillator

The potential is

V (x) = 1

2
x2 + λ1x4 + λ2x6

we take λ1 = λ2 = 1/2 The integration interval is [−R, R].
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In Table 2 we give the absolute error (×10−6) of the eigenvalues of the doubly
anharmonic oscillator with step size h = 1/40.

5 Conclusions

In this work three new SPRK methods were constructed and their efficiency has been
tested on the computation of the eigenvalues of the Schrödinger equation. For both
potentials used the new methods have superior performance when compared with
other SPRK methods even with the seven stages fourth order method. The phase fitted
methods give more accurate results than the minimum phase-lag method.
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